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Abstract: Statistics often seems opaque to beginners but its complexities flower from
fundamental concepts that become intuitive when studied through example. Here I
explain as much of Bayesian statistics as I can through one example: flipping a coin to
infer its fairness. I include snippets of statistical computing and end with a glimpse of
more extensive modeling.
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You flip a coin n times and y of them land heads: how fair is the coin? To be more precise,
assume the coin has some intrinsic probability θ (between 0 and 1) to land heads and call
this probability the coin’s fairness. Given the data from this random experiment, what
is θ? It’s a deep question and I hope my best attempt to answer it will give the reader an
intuition for Bayesian statistics as it has for me since I first worked through it.

Although the beta-binomial model, which I’ll spend this article describing, is often used
as an example in Bayesian statistics courses, such courses are often not taught or required at
the undergraduate level and often presuppose experience in probability and statistics [1]. I’ll
instead encapsulate core concepts of introductory probability and Bayesian statistics in an
accessible example. I aim to be concise and recommend the curious reader to refer to the
first few chapters of introductory textbooks, e.g. [2, 3], for more context.

Randomness in a head count: the likelihood
Introductory probability typically begins by defining a sample space, the set of possible
outcomes of an experiment. If we were to flip the coin a single time, the sample space would
be {T,H}, T meaning the coin lands tails and H that it lands heads. Flipping it twice, the
sample space would be S = {TT,TH,HT,HH}.

Even if the coin were fair, it’s quite probable the coin wouldn’t land evenly heads and
tails. We can split the sample space of two flips into subsets of the sample space, or events.
Two such events are A = {TH,HT}, the event that the flips fall evenly, and the event
B = {TT,HH} that they don’t. Together these two events make up the whole sample space
S though other events can be defined as well. They may overlap in outcomes (such as the
event that exactly one tails is flipped and the event that exactly one heads is flipped) or
even fill up the whole space — the event that any combination of heads and tails are flipped.
Let’s do a “naïve” [2] calculation of the probability (technically a function of an event
that returns a number between 0 and 1 and satisfies certain axioms) that both flips land
1Department of Systems Biology, Harvard Medical School (berk_alpay@g.harvard.edu)

1



evenly by comparing the sizes |A| and |B| of the events: p(A) = |A|/|S| = |A|
|A|+|B| = 1/2. The

calculation is naïve because it assumes all outcomes are equally likely and therefore that the
coin is fair. Note that even for a fair coin the probability that two flips fall evenly is only 1/2.

What’s that probability if we flip the coin ten times? There being two possible outcomes
of each of ten flips, the sample space would now have 210 outcomes, a much bigger set than
with two flips. It’d be tedious now to calculate the probability of the coin falling evenly by
tallying the suitable outcomes one by one. It would pay to be more clever. There are

(
10
5

)
outcomes in which the coin falls evenly: all the different ways to choose exactly five coins to
fall heads from the ten available. This

(
10
5

)
is called a binomial coefficient and is computed in

general as
(
n
k

)
= n!/(k!(n− k)!). There are 210 possible outcomes, so the probability that the

coin falls evenly over ten flips is
(
10
5

)
/210 ≈ 1/4, which is even less than with two flips.

So there’s quite a large probability that even a fair coin doesn’t fall evenly. But then
what’s the probability that it falls, say, almost evenly? Or that it falls entirely heads or tails?
Here, y is a real-number representation of the outcome of the experiment and is therefore
a random variable, representing the number of flips that land heads. To understand the
randomness in the number of heads y, it’d be ideal to know the relative probability of each
possible number of heads, what’s known as the probability distribution of y.

It’s getting harder to count outcomes corresponding to each event, so let’s be even cleverer
now and find a general formula that provides the probability of each possible number of heads.
Simultaneously, this formula will also handle coins that aren’t fair. The actual fairness is
uncertain but let’s condition on the fairness being some given θ, meaning we’ll take for granted
that the fairness is a certain known θ. The way we express this conditional probability
distribution of y given θ is as p(y|θ), which is shorthand notation for the probability of each
possible p(y = k|θ). The formula to compute those probabilities is

p(y|θ) =
(
n

y

)
θy(1− θ)n−y,

which can be derived by counting as follows. For exactly y flips to land heads, the coin
must land heads y times and all other flips must land tails n− y times. Since these flips are
independent, the joint probability of a particular sequence of y heads and n− y tails is
simply the product of the individual probabilities of each flip, giving θy(1− θ)n−y. But there
can be several ways in which exactly y heads can land; the first y flips might land heads and
the rest tails, or vice-versa, to name two. The binomial coefficient

(
n
y

)
counts all these ways.

This formula fully describes the distribution of a random variable and so it is called its
probability function. In this example this distribution represents the relative probabilities
of different numbers of heads. But more generally, we’re counting the number of times
something happens independently over a certain number of trials, with a given constant
probability of it happening each time; flipping a heads doesn’t change the probability that the
next flip is a tails. You could use the same kind of distribution to describe, for example, the
probability that a die rolls a five, with θ = 1/6 for a fair die. This distribution is so generally
useful that it has a name: the binomial distribution. We can say that y|θ is distributed
as a binomial random variable with parameters n and θ, which is written in notation as
y|θ ∼ Binomial(n, θ). Let’s plot it for n = 10 and θ = 1/2, the distribution of the number of
times a fair coin tossed ten times lands heads (Figure 1A).
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Figure 1: (A) The probability distribution of a Binomial(10, 1/2) random variable. (B) The
probability distributions of different beta random variables. (C) The posterior distribution
of θ under two different priors given the data y = 7 with n = 10, where y ∼ Binomial(n, θ).

We can do some calculations of useful properties of y|θ. Its expected value, or
mean, is the average of the values it can take, each value weighed by its probability,
E(y|θ) =

∑
k kp(y = k|θ). Its variance is the average squared distance from the mean. With

a bit of work, the mean of a binomially distributed random variable can be shown to be nθ
and its variance nθ(1− θ). It makes sense, for example, that the expected number of heads
of a fair coin tossed ten times is five, and that the average distance from the mean increases
as the scale of possible values increases.

We can simulate the distribution by simulating sets of ten random coin flips and counting
how many experiments record k heads for all possible k. Properties of the distribution can
be estimated from these simulations, for example in R:

# Simulate a Binomial(10, 1/2) random variable 10^5 times
y <- rbinom(n=10^5, size=10, prob=1/2)

# Calculate sample mean and variance
mean(y)
var(y)

First draft of fairness: the prior
We’ve been dealing with the distribution of the number of heads given a known fairness θ. But
really we don’t know what θ is: that’s why we’re doing the experiment. Let’s imagine what θ
could be. If the coin were rigged, it might land heads almost all the time or tails almost all
the time. But θ could be anywhere between 0 and 1, the valid range of a probability, and we
don’t yet have any experimental data of what it is.

Some random processes, at the mint, or at a trick coin factory, wear and tear, the style of
flipping, contribute to this coin’s fairness θ, which we can treat as a random variable. What is
the distribution of θ? Since we haven’t seen these prior processes, haven’t measured anything
about the coin, haven’t even tossed it, it falls to us to make a first judgment about p(θ).
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The beta class of distributions gives us a nice way of quantifying these judgments. A beta
distribution is of the form

p(θ) =
θα−1(1− θ)β−1

B(α, β)
where α > 0 and β > 0 are parameters that tune its shape. Here B is a function of α and β
that we won’t concern ourselves with since it serves purely as a normalization: it doesn’t
depend on θ and so doesn’t affect the shape of the distribution, only its area. In notation, we
write that θ ∼ Beta(α, β).

The beta distribution for different settings of α and β are shown in Figure 1B. Since θ
is continuous, its mean and variance are calculated not by summation as in the case of y|θ,
where it was possible to enumerate all possible y, but by integration, so that its mean for
example is E(θ) =

∫
θ
θp(θ)dθ. This mean can be shown to be α/(α+ β), so setting β > α, for

example, pushes the mean toward the left. Its variance αβ
(α+β)2(α+β+1)

is more complicated but
for example setting α = β = 10 centers the distribution at 1/2 with seven times less variance
than when α = β = 1, which in fact represents a uniform distribution and the belief that all
possible fairnesses are relatively speaking equally likely.

When we spoke of the distribution p(y|θ), the p truly denoted a probability for each
possible number of heads. But now we’re dealing with fairness, a continuous quantity, which
makes the interpretation of p(θ) subtler. Here p isn’t truly a probability. The probability that
θ is any particular value is zero; there are an infinite number of possible values of θ between
zero and one and each can’t have its own chance. Instead, p here represents density. One must
integrate over an interval of θ to observe any mass, meaning any nonzero probability. Thus we
use p to denote probability for discrete distributions, and density for continuous distributions.
This notation is convenient since probabilities and densities can often be treated similarly in
mathematical derivations.

Note that by modeling the coin’s fairness continuously, we assume the coin has no chance
of being truly fair. There is however a nonzero probability that the coin is within, say, 0.05
points of being fair: p(θ ∈ (0.45, 0.55)) > 0. For example, assuming a uniform distribution
over θ, this probability is 0.1, the area over that interval.

Second draft of fairness: the posterior
We now have the structure of how the data was generated: each flip of the coin lands heads
with probability θ. If we knew θ we’d be able to say exactly how the number of heads is
distributed. But we don’t know θ and we must use the y we measure to infer it.

In other words, we know how the data is generated except for the setting of a parameter,
and we want to use our data to learn about the true value of that parameter. This kind of
situation is at the heart of statistics: we have a model, we have data, and we want to use that
data to improve the model. Bayes’ Theorem, which can be easily derived from the axioms of
probability, elegantly and exactly expresses how to make this update:

p(θ|y) = p(y|θ)p(θ)
p(y)

.
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In technical terms, p(y|θ) is called the likelihood, p(θ) the prior, and p(y) has a number of
names but let’s call it the normalization (so called because it doesn’t depend on θ and thus
is practically a constant that simply rescales the numerator). What we infer, the parameter
or parameters given the data, is the posterior, p(θ|y).

In the last two sections we settled on a reasonable likelihood and form of the prior. We’ll
therefore know the form of the numerator in our application of Bayes’ theorem. Note that the
normalization doesn’t depend on θ: by definition it’s the distribution of the data not given θ.
Let’s ignore it for now since we’re interested in the shape and not the area of the posterior
distribution of θ. In fact, let’s prune further by removing all the factors in the likelihood
and prior that don’t contain a θ. Instead of computing p(θ|y) exactly, we compute what it’s
proportional to, its shape:

p(θ|y) ∝ p(y|θ)p(θ)
∝ θy(1− θ)n−yθα−1(1− θ)β−1

= θα+y−1(1− θ)β+n−y−1.

This expression looks a lot like the forms of both the beta and binomial distributions. But
θ|y can’t be binomially distributed since it’s the posterior fairness, which is continuous, and
so it must be beta-distributed. Indeed, the probability function of a Beta(α+ y, β + n− y)
random variable would be proportional to what we wrote for p(θ|y), and so we can conclude

θ|y ∼ Beta(α + y, β + n− y).

It’s called conjugacy when the distributional form of the prior is the same as that of
the posterior. As we have just shown, the beta distribution is conjugate to the binomial
distribution. Conjugate models are nice since the posterior can be computed so simply.
Conjugacy also lends a beautiful interpretation to the model. Each time we toss the coin,
we increment the first parameter of the posterior beta distribution if it lands heads, and
otherwise increment the second parameter; the first parameter counts heads, the second tails.
Thus, we can view α as the prior number of coin flips that landed heads and β as that that
landed tails. To set a uniform, Beta(1, 1) prior is equivalent to saying that we’ve seen two
coin flips land evenly before beginning the experiment. Such a prior experiment need not
have actually happened. It’s a prior belief: it’s as if we’ve seen such a prior experiment upon
distilling our prior knowledge. (For another example of a beautiful conjugate model, I refer
the reader to the Gamma-Poisson model, which can infer the underlying rate of an event
from counts of the event over separate time intervals.)

Inference and the influence of the prior
We now have our model and we know how to infer the parameter θ of that model from
data. Before performing our experiment, let’s reason about the prior we might actually
want to set in light of the insight that the posterior distribution is combining a (potentially
imaginary) prior experiment with our new one. We’ve been using the uniform prior as an
example. It’s useful to think about how the choice of prior influences the posterior before we
compute it using real data. If we were to observe, say, just one flip whose result is heads, the
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posterior would be distributed Beta(2, 1) and the posterior expectation of the fairness would
be E(θ|y) = 2/3.

Would we really expect a random coin to be so unfair? The uniform prior over θ, although
uniform, is itself an assumption and may not be realistic. Knowing nothing else, for example,
I acknowledge the random coin could be slightly unfair for some physical reasons I’m unaware
of, but based on my prior experience with coins I’d be very skeptical of it being very unfair. I
might therefore assume a Beta(10, 10) prior, under which the posterior expectation given one
heads in one flip would be 11/20 ≈ 0.55, which to me seems more reasonable if my goal were
to give my best estimate of the fairness of the coin. Under this stronger prior, the posterior
is less sensitive to the noise in the data.

In science we often have at least some prior belief, and there’s no good way in general to
posit an absence of belief. Weak priors can be bad priors, which is important if the data are
small and/or noisy. As more data is collected, the influence of the prior wanes. If we were to
flip the coin a million times, whether we set α = β = 1 or α = β = 100 won’t matter much
to the posterior.

Now we run the actual experiment by flipping the coin n = 10 times. We see it lands
heads y = 7 times. To repeat the original question: how fair is the coin? We’re now in a
position to answer. Figure 1C shows the exact distribution of the fairness inferred under our
model, with two different priors for comparison.

Some extensions
I’ve given a detailed explanation of the beta-binomial model which is often useful by itself.
But one of the wonderful aspects of Bayesian statistics is the adaptability of its models. I’ll
share two extensions of what we’ve done.

It’s often useful to compare two random variables (for example, in clinical medicine, in
inferring the difference in patient outcomes between control and treatment groups). To
demonstrate the power of inferring posterior distributions, let’s extend our inference to two
coins and ask how different they are in fairness. One is the coin we just flipped and which
landed heads seven of ten times, and the other is a new coin which in two flips lands evenly
heads and tails. Let’s call the fairness of the first coin θ1 and that of the second θ2. We’re
now interested in the distribution of θ2 − θ1, which is itself a random variable. Rather than
deriving a new inference method, we can use our conjugate model twice, once for each coin,
and simulate the difference:

# Draw 10^5 samples of each posterior theta assuming uniform priors
post1 <- rbeta(10**5, 1+7, 1+3)
post2 <- rbeta(10**5, 1+1, 1+1)

# Sample the difference in the posterior fairnesses
diff <- post2 - post1
quantile(diff, probs=c(0.025, 0.5, 0.975))

The last line of code estimates the median posterior difference to be −0.17, meaning the
second coin seems to tend considerably more toward tails, but with a central 95% credible
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interval of (−0.65, 0.33). This interval contains 95% of the posterior probability mass of the
difference. Given the width of this interval, we’re quite uncertain of our estimate of the
difference, which makes sense given the small number of observations.

This was an easy extension since the underlying model was unchanged. Consider however
that maybe at night when the room is dark, coins that land heads are sometimes misread as
tails with probability ϵ. We can write this model:

θ ∼ Beta(1, 1)
ϵ ∼ Beta(1, 5)

y|θ ∼ Binomial(n1, θ)

γ|θ ∼ Binomial(n2, θ(1− ϵ)).

We observe n1 flips y of which land heads perfectly seen in daylight, but of n2 flips at night
we observe an error-prone count of γ heads.

There are now two parameters θ and ϵ in this model and we must adjust our inference
technique. Although there are simpler ways in this case, for generality’s sake, supposing
we might want to further modify the model later on, let’s do inference using a probabilistic
programming language. Probabilistic programming languages generally use a technique
called Markov chain Monte Carlo to sample the posterior in a way that’s flexible to the
specification of the model, allowing the user to make adjustments to the model without having
to reformulate an inference method each time. In Stan [4], a probabilistic programming
language, our model can be written in a file named “model.stan” as:

data {
int<lower=0> n1;
int<lower=0> n2;
int<lower=0> y;
int<lower=0> gamma;

}
parameters {

real<lower=0, upper=1> theta;
real<lower=0, upper=1> epsilon;

}
model {

theta ~ beta(1, 1);
epsilon ~ beta(1, 5);
y ~ binomial(n1, theta);
gamma ~ binomial(n2, theta * (1-epsilon));

}

Saying we observe y = 7 heads of n1 = 10 daytime flips and γ = 2 heads of n2 = 5 nighttime
flips, the posterior distributions of θ and ϵ can be inferred in R as:

library(rstan)
stan("model.stan", data=list(n1=10, n2=5, y=7, gamma=2))
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Figure 2: The posterior distributions of θ and ϵ where θ is still the underlying fairness of
the coin but ϵ is the probability that each heads is misread as tails at night.

Stan then samples the posterior distribution and these samples can plotted as in Figure 2.
Another extension might be to say that the fairness of the coin depends on who’s flipping

it: maybe each person has a different technique that affects the fairness. Then we should take
into account who’s flipping the coin and the variation in fairness among them, as authors of
a study of coin flips recently did [5].

Conclusion
I often refer to the coin-flipping example in my research and teaching because it accessibly
conveys important principles of applied statistics: to model carefully, think distributionally,
and simulate. It’s informative for the beginner and often useful when analyzing count data.
It’s also a conversation piece for experienced statisticians. What does it mean for a fairness
to be random? Is a coin ever truly fair? How should you set priors? How extensive should
your model be? Statistics is a beautiful but precarious discipline. Rich examples steady us as
we climb and I hope my explanation of the beta-binomial model will serve in this respect.
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